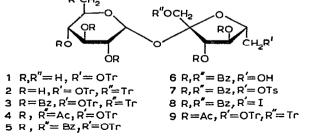
Note

Sucrochemistry Part II¹, 6.6'-Di-*O*-tritylsucrose


L. Hough, K. S. Mufti.

Department of Chemistry, Queen Elizabeth College (University of London), Campden Hill Road, London W8 7AH (Great Britain)

AND R. KHAN

Tate and Lyle Research Centre, Ravensbourne, Westerham Road, Keston, Kent (Great Britain) (Received May 30th, 1971; accepted for publication, July 9th, 1971)

Selective tosylation of sucrose affords, after column chromatography, 6.6'-di-O-tosylsucrose¹ in $\sim 20\%$ yield, which undergoes displacement reactions with various nucleophiles to give bifunctional derivatives of sucrose. As an alternative route, the synthesis of 6.6'-di-O-tritylsucrose (1) was explored, in view of the previous observations¹ on the enhanced reactivity of the primary hydroxyl groups at C-6 and C-6'.

Tri-O-tritylsucrose (2) was first reported crystalline by Josephson², but later workers obtained a colourless glass that was reported to be a mixture of tri-O-tritylsucrose, products of lower trityl content, reducing sugar fragments, and triphenylmethanol³. Tritylation of sucrose with four mol. of reagent in pyridine yielded a mixture which was separated by column chromatography to give crystalline 1',6,6'-tri-O-tritylsucrose (2) and 6,6'-di-O-tritylsucrose (1) in 58 and 30% yield, respectively. Acetylation of 2 gave the known³ penta-acetate 9 and benzoylation gave a crystalline pentabenzoate 3. Likewise, the di-O-trityl derivative 1 afforded the corresponding hexa-acetate 4 and hexabenzoate 5 as crystalline derivatives. The location of the trityl groups at the 6- and 6'-positions was determined by their selective cleavage from the hexabenzoate derivative 5, by using either hydrobromic acid in glacial acetic acid

NOTE 145

at 5-10° or boiling, aqueous acetic acid, to give the diol 6 which on tosylation gave the known 6,6'-di-O-tosylsucrose hexabenzoate (7)¹. The identification was confirmed by conversion of 7 into the 6,6'-di-iodo derivative 8 by treatment with sodium iodide in butanone¹.

Thus, the primary hydroxyl groups of sucrose at C-6 of the D-glucopyranosyl unit and at C-6' of the D-fructofuranosyl unit react preferentially with trityl chloride. Unlike acetyl substituents, the benzoyl groups of 1',2,3,3',4,4'-hexa-O-benzoylsucrose (6) did not migrate upon detritylation of 5, thus providing a new route to 6,6'-bifunctional derivatives of sucrose. The ¹H-n.m.r. spectra of the hexa-O-acetyl (4) and hexa-O-benzoyl (5) derivatives of 6,6'-di-O-tritylsucrose and of 6,6'-di-iodo-sucrose hexabenzoate are recorded in Table I.

TABLE I FIRST-ORDER CHEMICAL SHIFTS^{α} (τ values) and coupling constants (Hz) at 100 MHz

Derivative: Solvent:	Acetate 4 Chloroform-d	Benzoate 5 Acetone-d ₆	Di-iodide 8 Chloroform-d
		11000000-110	
H-1	4.3 d	3.76d	3.9d
H-2	5.18q	4.7 q	4.56a
H-3	•	4.1 t	3.81 t
H-3'	4.67 d	3.86d	4.03 d
H-4	•	4.5t	4.5t
H-4'	4.71 t	3.68t	4.15t
Α¢	7.93s, 7.94s. 7.95s, 8.0s, 8.05s, 8.36s		
Tr	2.53–2.87 m		
Bz			1.8-2.98 m
$J_{1,2}$	3.5	3.5	3.0
$J_{2,3}$	9.5	10.0	10.0
$J_{3,4}$		10.0	10.0
$J_{4.5}$		10.0	10.0
$J_{3',4'}$	7.0	7.5	6.0
$J_{4',5'}$	7.0	7.5	6.0

s = singlet, d = doublet, q = quartet, t = triplet, m = multiplet.

EXPERIMENTAL

The general experimental data are as described in Part I.

6,6'-Di-O-tritylsucrose (1) and 1',6,6'-tri-O-tritylsucrose (2). — To a solution of sucrose (15 g) in pyridine (225 ml) was added, dropwise during 0.5 h, a solution of trityl chloride (41.5 g) in pyridine (50 ml). The reaction mixture was then stirred at room temperature for 2 days. Concentration of the solution gave a brown syrup which was dissolved in chloroform, and this solution was washed successively with 2M hydrochloric acid and water, and then dried (Na₂SO₄). The chloroform was distilled off to give a syrup (35 g) which showed on t.l.c. (chloroform-acetone, 2:1) a fast-moving, yellow spot (triphenylmethanol) and two slower-moving products.

146 NOTE

Separation of these components by elution from silica gel (500 g, Mallinckrodt) with chloroform-acetone (4:1) gave initially 1',6,6'-tri-O-tritylsucrose^{1,2} (2, 27.1 g, 58%), m.p. 128–130° (from chloroform-light petroleum), $[\alpha]_D^{23} + 62.2^\circ$ (c 0.87, chloroform); lit.² m.p. 127–129°, $[\alpha]_D^{23} + 43.4^\circ$ (ethanol) (Found: C, 77.5; H, 5.8. $C_{69}H_{64}O_{11}$ calc.: C, 77.7; H, 6.2%). Acetylation, in the usual way, gave the penta-acetate 9, m.p. 229–230°, $[\alpha]_D^{23} + 66.7^\circ$ (c 1.03, chloroform); lit.³ m.p. 235–236°, $[\alpha]_D^{17} + 68.9^\circ$ (c 2.45, chloroform).

- 6,6'-Di-O-tritylsucrose (1, 12.1 g, 30%) was then eluted and isolated as a syrup which crystallised from chloroform-light petroleum; m.p. 134-136°, $[\alpha]_D^{23}$ +43° (c 0.2, chloroform) (Found: C, 71.8; H, 6.5. $C_{50}H_{50}O_{11}$ calc.: C, 72.6; H, 6.05%).
- 2,3,3',4,4'-Penta-O-benzoyl-1',6,6'-tri-O-tritylsucrose (3). Benzoyl chloride (4 ml) was added to a cooled solution of 1 (3.2 g) in dry pyridine (20 ml) which was then left at room temperature for 24 h. Isolation in the usual way, by pouring onto ice-water followed by chloroform extraction, gave the pentabenzoate 3 (2.9 g, 60%), m.p. 129-131° (from methanol), $[\alpha]_D^{23} + 14.9^\circ$ (c 0.91, chloroform) (Found: C, 78.3; H, 5.2. $C_{104}H_{84}O_{11}$ calc.: C, 78.8; H, 5.5%).
- 1',2,3,3',4,4'-Hexa-O-benzoyl-6,6'-di-O-tritylsucrose (5). Benzoylation of **2** (1.8 g) as above gave the hexabenzoate 5 (2.6 g, 82%), m.p. 107–110° (from ethanol), $[\alpha]_D + 3^\circ$ (c 0.2, chloroform) (Found: C, 75.6; H, 5.2. $C_{92}H_{74}O_{17}$ calc.: C, 76.1; H, 5.1%).
- 1,2,3,3',4,4'-Hexa-O-acetyl-6,6'-di-O-tritylsucrose (4). Conventional acetylation of 2 (3 g) with acetic anhydride (4.5 ml) in pyridine (100 ml) at room temperature for 2 days gave the hexa-acetate 4 (3 g, 77%), m.p. 104–105° (from methanol), $[\alpha]_D^{23} + 64.6^\circ$ (c 0.2, chloroform) (Found: C, 68.6; H, 6.15. $C_{62}H_{62}O_{17}$ calc.: 69.0; H, 5.75%).
- 1',2,3,3',4,4'-Hexa-O-benzoylsucrose (6). (a) A solution of the 6,6'-ditrityl ether 5 (6 g) in glacial acetic acid (6 ml) was mixed at 5° with 45% hydrobromic acid in glacial acetic acid (6 ml) and shaken for 5 min. Triphenylmethanol was immediately filtered off, and the filtrate was collected in ice-aqueous sodium hydrogen carbonate and extracted with chloroform. The extract was dried (Na₂SO₄) and concentrated, and the residual syrup was eluted from silica gel (30 g), using ether-light petroleum (3:1), to give the hexabenzoate 6 as a syrup (2.5 g, 76%), $[\alpha]_D^{23} + 23^\circ$ (c 0.61, chloroform) (Found: C, 66.7; H, 4.8. C₅₄H₄₆O₁₇ calc.: C, 67.1; H, 4.8 %).
- (b) A solution of the ditrityl ether 5 (2.5 g) in glacial acetic acid (50 ml) was heated to the boiling point, water (1 ml) was added, and the mixture was refluxed for 1 h. Removal of the solvents by co-distillation with toluene gave a syrup which was purified by elution from silica gel (30 g) with ether-light petroleum (3:1). The product co-chromatographed on t.l.c. with that prepared in (a), showed identical i.r. spectra, and gave the 6,6'-di-O-tosyl derivative 7 (68% yield), m.p. and mixed m.p. $93-96^{\circ}$, $[a]_D + 24.1^{\circ}$ (c 2.5, chloroform) (Found: C, 63.9; H, 4.7; S, 5.1. $C_{68}H_{58}O_{21}S_2$ calc.: C, 64.0; H, 4.5; S, 5.2%).

Treatment of 7 with sodium iodide in butanone in the usual way¹ gave the 6,6'-di-iodo derivative 8 (31%), m.p. and mixed m.p. $178-179^{\circ}$, $[\alpha]_D + 0.2^{\circ}$ (c 2.8,

NOTE 147

chloroform) (Found: C, 54.5; H, 3.8; I, 21.0. $C_{54}H_{44}I_2O_{15}$ calc.: C, 54.6; H, 3.7; I, 21.4%).

ACKNOWLEDGMENTS

We thank the International Sugar Research Foundation (Washington, U. S. A.) for a grant-in-aid (to K. S. M.), and the Director of the Tate and Lyle Research Centre for his advice and support (to R. K.).

REFERENCES

- 1 Part I: C. H. BOLTON, L. HOUGH, AND R. KHAN, Carbohyd. Res., 21 (1972) 133.
- 2 K. Josephson, Ann. 472 (1929) 230.
- 3 G. G. McKeown, R. S. E. Serenius, and L. D. Hayward, Can. J. Chem., 35 (1957) 28.

Carbohyd. Res., 21 (1972) 144-147